Bioelectronics at graphene-biofilm interface: Schottky junction formation and capacitive transitions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphene-on-silicon Schottky junction solar cells.

www.MaterialsViews.com C O M Graphene-On-Silicon Schottky Junction Solar Cells M U N I By Xinming Li , Hongwei Zhu , * Kunlin Wang , * Anyuan Cao , Jinquan Wei , Chunyan Li , Yi Jia , Zhen Li , Xiao Li , and Dehai Wu C A IO N Graphene, a single atomic layer of carbon hexagons, has stimulated a lot of research interest owing to its unique structure and fascinating properties. [ 1 ] Graphene has ...

متن کامل

Junction investigation of graphene/silicon Schottky diodes

Here we present a facile technique for the large-scale production of few-layer graphene flakes. The as-sonicated, supernatant, and sediment of the graphene product were respectively sprayed onto different types of silicon wafers. It was found that all devices exhibited current rectification properties, and the supernatant graphene devices have the best performance. Schottky junctions formed bet...

متن کامل

Interface states and Schottky barrier formation at metal/GaAs junctions

We report results of x-ray photoemission and cathodoluminescence spectroscopies studies of interface formation at metal-GaAs junctions. The results are interpreted by using a microscopic model of metal-semiconductor interfaces. Our low-temperature measurements and analyses show the validity of Schottky'S phenomenological description, thereby suggesting that metalinduced gap states and native de...

متن کامل

On/Off-switchable zipper-like bioelectronics on a graphene interface.

An on/off-switchable graphene-based zipper-like interface is architectured for efficient bioelectrocatalysis. The graphene interface transduces a temperature input signal into structural changes of the membrane, resulting in the amplification of electrochemical signals and their transformation into the gated transport of molecules through the membrane.

متن کامل

Programmable bioelectronics in a stimuli-encoded 3D graphene interface.

The ability to program and mimic the dynamic microenvironment of living organisms is a crucial step towards the engineering of advanced bioelectronics. Here, we report for the first time a design for programmable bioelectronics, with 'built-in' switchable and tunable bio-catalytic performance that responds simultaneously to appropriate stimuli. The designed bio-electrodes comprise light and tem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Medical Devices & Sensors

سال: 2018

ISSN: 2573-802X

DOI: 10.1002/mds3.10013